![]() |
![]() |
![]() |
●知识梳理
1.平均数的计算方法
(1)如果有n个数据x1,x2,…,xn,那么 = (x1+x2+…+xn)叫做这n个数据的平均数, 读作“x拔”.
(2)当一组数据x1,x2,…,xn的各个数值较大时,可将各数据同时减去一个适当的常数a,得到x1′=x1-a,x2′=x2-a,…,xn′=xn-a,那么, = +a.
(3)加权平均数:如果在n个数据中,x1出现f1次,x2出现f2次,…,xk出现fk次(f1+f2+…+fk=n),那么
= .
2.方差的计算方法
(1)对于一组数据x1,x2,…,xn,s2= [(x1- )2+(x2- )2+…+(xn- )2]叫做这组数据的方差,而s叫做标准差.
(2)公式s2= [(x12+x22+…+xn2)-n 2].
(3)当一组数据x1,x2,…,xn中的各数较大时,可以将各数据减去一个适当的常数a,得到x1′=x1-a,x2′=x2-a,…,xn′=xn-a.
则s2= [(x1′2+x2′2+…+xn′2)-n ].
3.总体平均值和方差的估计
人类的长期实践和理论研究都充分证明了用样本的平均数估计总体平均值,用样本方差估计总体方差是可行的,而且样本容量越大,估计就越准确.
●点击双基
1.描述总体离散型程度或稳定性的特征数是总体方差,以下统计量估计总体稳定性的是
A.样本均值 B.样本方差
C.样本最大值 D.样本最小值
2.甲、乙两人在相同的条件下,射击10次,命中环数如下:
甲:8,6,9,5,10,7,4,8,9,5;
乙:7,6,5,8,6,9,6,8,7,7.
根据以上数据估计两人的技术稳定性,结论是
A.甲优于乙 B.乙优于甲
C.两人没区别 D.两人区别不大
3.样本a1,a2,a3,…,a10的平均数为 ,样本b1,b2,b3,…,b10的平均数为 ,那么样本a1,b1,a2,b2,…,a10,b10的平均数为
A. + B. ( + )
C.2( + ) D. ( + )
4.电池厂从某日生产的电池中抽取10个进行寿命测试,得到数据如下(单位:h):30,35,25,25,30,34,26,25,29,21.则该电池的平均寿命估计为___________,方差估计为___________.
●典例剖析
【例1】 是x1,x2,…,x100的平均数,a是x1,x2,…,x40的平均数,b是x41,x42,…,x100的平均数,则下列各式正确的是
A. = B. =
C. =a+b D. =
特别提示
【例2】 甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环)
甲 10 8 9 9 9
乙 10 10 7 9 9
如果甲、乙两人只有1人入选,则入选的应是___________.
【例3】 某班40人随机分为两组,第一组18人,第二组22人,两组学生在某次数学检测中的成绩如下表:
分 组 平均成绩 标准差
第一组 90 6
第二组 80 4
求全班的平均成绩和标准差.
【例4】 已知c为常数,s2= [(x1- )2+(x2- )2+…+(xn- )2],sc2= [(x1-c)2+(x2-c)2+…+(xn-c)2].证明:s2≤sc2,当且仅当c= 时,取“=”.
●闯关训练
夯实基础
1.一组数据的方差为s2,将这组数据中的每一个数都乘以2,所得到的一组新数据的方差是
A. s2 B.2s2 C.4s2 D.s2
2.某班有48名学生,在一次考试中统计出平均分为70分,方差为75,后来发现有2名同学的成绩有误,甲实得80分却记为50分,乙实得70分却记为100分,更正后平均分和方差分别是
A.70,25 B.70,50
C.70,1.04 D.65,25
3.甲、乙两种冬小麦试验品种连续5年的平均单位面积产量如下(单位:t/hm2):
品种 第1年 第2年 第3年 第4年 第5年
甲 9.8 9.9 10.1 10 10.2
乙 9.4 10.3 10.8 9.7 9.8
其中产品比较稳定的小麦品种是_______.
解析: 甲= (9.8+9.9+10.1+10+10.2)=10,
4.为了科学地比较考试的成绩,有些选拔性考试常常会将考试分数转化为标准分,转化关系式为Z= (其中x是某位学生的考试分数, 是该次考试的平均分,s是该次考试的标准差,Z称为这位学生的标准分).转化成标准分后可能出现小数和负值,因此,又常常再将Z分数作线性变换转化成其他分数.例如某次学生选拔考试采用的是T分数,线性变换公式是T=40Z+60.已知在这次考试中某位考生的考试分数是85分,这次考试的平均分是70分,标准差是25,则该考生的T分数为___________.
5.已知两家工厂,一年四季上缴利税情况如下(单位:万元):
季 度 一 二 三 四
甲 厂 70 50 80 40
乙 厂 55 65 55 65
试分析两厂上缴利税的情况.
解:甲、乙两厂上缴利税的季平均值分别为
甲= (70+50+80+40)=60,
乙= (55+65+55+65)=60;
甲、乙两厂上缴利税的方差为
s甲2= [(70-60)2+(50-60)2+(80-60)2+(40-60)2]=250,
s乙2= [(55-60)2+(65-60)2+(55-60)2+(65-60)2]=25.
经上述结果分析,两厂上缴利税的季平均值相同,但甲厂比乙厂波动大,导致它们生产出现的差异大,乙厂不同季节的缴税量比较接近平均值,生产稳定,而甲厂不稳定.
培养能力
6.某校从甲、乙两名优秀选手中选拔1名参加全市中学生百米比赛,该校预先对这两名选手测试了8次,成绩如下表:
选手成绩(s) 1 2 3 4 5 6 7 8
甲 12.1 12.2 13 12.5 13.1 12.5 12.4 12.2
乙 12 12.4 12.8 13 12.2 12.8 12.3 12.5
7.某农场为了从三种不同的西红柿品种中选取高产稳定的西红柿品种,分别在五块试验田上试种,每块试验田均为0.5公顷,产量情况如下:
品 种 产量(kg)
1 2 3 4 5
1 21.5 20.4 22.0 21.2 19.9
2 21.3 18.9 18.9 21.4 19.8
3 17.8 23.3 21.4 19.1 20.9
8.甲、乙两台机床在相同的条件下同时生产一种零件,现在从中各抽测10个,它们的尺寸分别为(单位:mm):
甲:10.2 10.1 10.9 8.9 9.9 10.3 9.7 10 9.9 10.1
乙:10.3 10.4 9.6 9.9 10.1 10 9.8 9.7 10.2 10
分别计算上面两个样本的平均数与方差,如果图纸上的设计尺寸为10 mm,从计算结果看,用哪台机床加工这种零件较合适?
本贴来源:百分家教网·西安家教网 本贴地址:http://www.bfjjw.com/jiaoan/437.html
1.平均数的计算方法
(1)如果有n个数据x1,x2,…,xn,那么 = (x1+x2+…+xn)叫做这n个数据的平均数, 读作“x拔”.
(2)当一组数据x1,x2,…,xn的各个数值较大时,可将各数据同时减去一个适当的常数a,得到x1′=x1-a,x2′=x2-a,…,xn′=xn-a,那么, = +a.
(3)加权平均数:如果在n个数据中,x1出现f1次,x2出现f2次,…,xk出现fk次(f1+f2+…+fk=n),那么
= .
2.方差的计算方法
(1)对于一组数据x1,x2,…,xn,s2= [(x1- )2+(x2- )2+…+(xn- )2]叫做这组数据的方差,而s叫做标准差.
(2)公式s2= [(x12+x22+…+xn2)-n 2].
(3)当一组数据x1,x2,…,xn中的各数较大时,可以将各数据减去一个适当的常数a,得到x1′=x1-a,x2′=x2-a,…,xn′=xn-a.
则s2= [(x1′2+x2′2+…+xn′2)-n ].
3.总体平均值和方差的估计
人类的长期实践和理论研究都充分证明了用样本的平均数估计总体平均值,用样本方差估计总体方差是可行的,而且样本容量越大,估计就越准确.
●点击双基
1.描述总体离散型程度或稳定性的特征数是总体方差,以下统计量估计总体稳定性的是
A.样本均值 B.样本方差
C.样本最大值 D.样本最小值
2.甲、乙两人在相同的条件下,射击10次,命中环数如下:
甲:8,6,9,5,10,7,4,8,9,5;
乙:7,6,5,8,6,9,6,8,7,7.
根据以上数据估计两人的技术稳定性,结论是
A.甲优于乙 B.乙优于甲
C.两人没区别 D.两人区别不大
3.样本a1,a2,a3,…,a10的平均数为 ,样本b1,b2,b3,…,b10的平均数为 ,那么样本a1,b1,a2,b2,…,a10,b10的平均数为
A. + B. ( + )
C.2( + ) D. ( + )
4.电池厂从某日生产的电池中抽取10个进行寿命测试,得到数据如下(单位:h):30,35,25,25,30,34,26,25,29,21.则该电池的平均寿命估计为___________,方差估计为___________.
●典例剖析
【例1】 是x1,x2,…,x100的平均数,a是x1,x2,…,x40的平均数,b是x41,x42,…,x100的平均数,则下列各式正确的是
A. = B. =
C. =a+b D. =
特别提示
【例2】 甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环)
甲 10 8 9 9 9
乙 10 10 7 9 9
如果甲、乙两人只有1人入选,则入选的应是___________.
【例3】 某班40人随机分为两组,第一组18人,第二组22人,两组学生在某次数学检测中的成绩如下表:
分 组 平均成绩 标准差
第一组 90 6
第二组 80 4
求全班的平均成绩和标准差.
【例4】 已知c为常数,s2= [(x1- )2+(x2- )2+…+(xn- )2],sc2= [(x1-c)2+(x2-c)2+…+(xn-c)2].证明:s2≤sc2,当且仅当c= 时,取“=”.
●闯关训练
夯实基础
1.一组数据的方差为s2,将这组数据中的每一个数都乘以2,所得到的一组新数据的方差是
A. s2 B.2s2 C.4s2 D.s2
2.某班有48名学生,在一次考试中统计出平均分为70分,方差为75,后来发现有2名同学的成绩有误,甲实得80分却记为50分,乙实得70分却记为100分,更正后平均分和方差分别是
A.70,25 B.70,50
C.70,1.04 D.65,25
3.甲、乙两种冬小麦试验品种连续5年的平均单位面积产量如下(单位:t/hm2):
品种 第1年 第2年 第3年 第4年 第5年
甲 9.8 9.9 10.1 10 10.2
乙 9.4 10.3 10.8 9.7 9.8
其中产品比较稳定的小麦品种是_______.
解析: 甲= (9.8+9.9+10.1+10+10.2)=10,
4.为了科学地比较考试的成绩,有些选拔性考试常常会将考试分数转化为标准分,转化关系式为Z= (其中x是某位学生的考试分数, 是该次考试的平均分,s是该次考试的标准差,Z称为这位学生的标准分).转化成标准分后可能出现小数和负值,因此,又常常再将Z分数作线性变换转化成其他分数.例如某次学生选拔考试采用的是T分数,线性变换公式是T=40Z+60.已知在这次考试中某位考生的考试分数是85分,这次考试的平均分是70分,标准差是25,则该考生的T分数为___________.
5.已知两家工厂,一年四季上缴利税情况如下(单位:万元):
季 度 一 二 三 四
甲 厂 70 50 80 40
乙 厂 55 65 55 65
试分析两厂上缴利税的情况.
解:甲、乙两厂上缴利税的季平均值分别为
甲= (70+50+80+40)=60,
乙= (55+65+55+65)=60;
甲、乙两厂上缴利税的方差为
s甲2= [(70-60)2+(50-60)2+(80-60)2+(40-60)2]=250,
s乙2= [(55-60)2+(65-60)2+(55-60)2+(65-60)2]=25.
经上述结果分析,两厂上缴利税的季平均值相同,但甲厂比乙厂波动大,导致它们生产出现的差异大,乙厂不同季节的缴税量比较接近平均值,生产稳定,而甲厂不稳定.
培养能力
6.某校从甲、乙两名优秀选手中选拔1名参加全市中学生百米比赛,该校预先对这两名选手测试了8次,成绩如下表:
选手成绩(s) 1 2 3 4 5 6 7 8
甲 12.1 12.2 13 12.5 13.1 12.5 12.4 12.2
乙 12 12.4 12.8 13 12.2 12.8 12.3 12.5
7.某农场为了从三种不同的西红柿品种中选取高产稳定的西红柿品种,分别在五块试验田上试种,每块试验田均为0.5公顷,产量情况如下:
品 种 产量(kg)
1 2 3 4 5
1 21.5 20.4 22.0 21.2 19.9
2 21.3 18.9 18.9 21.4 19.8
3 17.8 23.3 21.4 19.1 20.9
8.甲、乙两台机床在相同的条件下同时生产一种零件,现在从中各抽测10个,它们的尺寸分别为(单位:mm):
甲:10.2 10.1 10.9 8.9 9.9 10.3 9.7 10 9.9 10.1
乙:10.3 10.4 9.6 9.9 10.1 10 9.8 9.7 10.2 10
分别计算上面两个样本的平均数与方差,如果图纸上的设计尺寸为10 mm,从计算结果看,用哪台机床加工这种零件较合适?
回复1:![]() |
修改 删除 |
请各位老师,同学 家长给指点 |